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Abstract

Kinesins and dyneins are protein motors that can use the free energy of ATP hydrolysis to carry a cargo and move
uni-directionally along a microtubule filament. The purpose of this paper is to derive the formalism connecting the
ATP-driven translocation reactions of these motors on microtubule filaments and the movement of the bead carried
by the motor in a motility assay in which the bead is clamped at an arbitrary constant force. The formalism is thus
useful in elucidating the load-dependent kinetic mechanism of the free-energy transduction of the motor using the
mechanical data obtained from the motility assay. The formalism is also useful in assessing the effect on the
measured motility data of various physical and hydrodynamic parameters of the assay, such as the size of the bead,
the viscosity of the medium, the stiffness of the elastic element connecting the motor and the bead, etc. In a previous

� Ž . � Ž .paper Biophys. J. 67 2000 313 hereafter referred to as paper I , we have derived the formalism for the case that
the motor in the assay has only one head. In this paper we extend the derivation to the case that the motor is
two-headed. The formalism is derived based on a simple two-state hand-over-hand model for the movement of the
motor on microtubule, but can be easily extended to more complicated kinetic models. Effects of various
hydrodynamic parameters on the velocity of the bead are studied with numerical calculations of the model. The
difference between the formalism presented in this paper and the widely used ‘chemical’ formalism, in which the
movement of the kinesin and the bead is described by pure chemical reactions, is discussed. � 2001 Elsevier Science
B.V. All rights reserved.
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1. Introduction

Kinesins and dyneins are microtubule-based
protein motors that can utilize the free energy of
ATP hydrolysis to carry a cargo uni-directionally
along a microtubule. Since the first kinesin was
found in mid-1980, a number of different in vitro
motility assays using purified motors have been
developed in several laboratories to characterize
the load-dependent free-energy transduction

� �processes of these motors 2�10 . Mechanical
properties, such as the step size, the velocity of
movement of the motors, etc., have been eluci-
dated from these motility measurements. Re-

� �cently, Visscher et al. 10 have developed a motil-
ity assay in which the movement of a large plastic
bead attached with a single purified kinesin motor
can be measured under a force-clamp. With this
assay, the velocity of the bead can be measured
accurately as a function of the load at a fixed
ATP concentration or as a function of ATP con-
centration at a fixed load. These motility data
directly describe the relationship between the
movement of the bead and the chemical driving
force as a function of the externally applied load
and should be useful in elucidating the mecha-
nism of free energy transduction in kinesin mo-
tors. Up to now these motility data have been
interpreted only in terms of the pure ‘chemical’
formalism, in which the movement of the motor is
described by a set of chemical reactions with

� �some force-dependent steps 11�16 . That is, the
motion of the bead and its interaction with the
motor are completely ignored and the force ap-
plied to the motor is assumed to be constant in
this chemical formalism. However, since the mo-
tor is attached elastically to the bead in the
motility assay and the movements of the bead and
the motor are not synchronized, the motion of the
bead should have a great influence on the kinetic
reactions of the motor. Thus, it is important to
consider the bead movement when the motility

� �data of Visscher et al. 10 is used to elucidate the
load-dependent kinetic mechanism of the motor.

In this series of studies, we present the deriva-
tion of formalisms that directly deal with the
movement of the bead in the motility assay.
Specifically, we derive formalisms that connect

the movement of the bead in the motility assay of
Visscher et al. and the kinetic reactions of ATP
hydrolysis of the motor so that the measured
motility data can be directly used for kinetic
modeling. In paper I, we considered the system
that the motor attached to the bead in the motil-
ity assay is one-headed. In this paper, we extend
the derivation to the system that the motor is
two-headed. We first derive the formalism using a
simple two-state model with the hand-over-hand

� �mechanism 17�20 . The effect of the various
hydrodynamic parameters of the system on the
bead velocity and the differences between the
pure chemical formalism and the present formal-
ism are then studied with some numerical calcu-
lations of the model. We show that with the same
set of kinetic parameters the ‘mean’ velocity of
the motor calculated without the interference of

Ž .the bead using the chemical formalism is always
larger than that with interference, unless the elas-
tic element between the motor and the bead is

Ž .completely flexible with zero stiffness .

2. Mathematical formalism

We will derive the formalism based on the
simple two-state kinetic model shown in Fig. 1a
for the ATP hydrolysis-coupled translocation of a
motor on a microtubule lattice. However, the
derivation can be extended easily to other more
complicated kinetic models. This model is a sim-
plified version of the hand-over-hand model pro-
posed for the processive movement of kinesin

� �motor on microtubule 17�20 . As described in
Fig. 1a, the motor is assumed to exist only in two
biochemical states, state 1 and state 2, and one
and only one of its two heads is attached to the
microtubule at any given time. The head attaches
perpendicularly to the microtubule axis when in
state 1 and is tilted toward the forward-moving

Ždirection toward the � end of the microtubule
for � end moving kinesins and toward the � end

.for dyneins when in state 2. There are two kinds
of transitions between states 1 and 2: the � and
the � transition. In the � transition, the same
head of the motor remains attached to the same
binding site on the microtubule. On the other
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Ž .Fig. 1. a Schematic representation of the kinetic mechanisms of the two-state hand-over-hand model. The two-headed motor
undergoes two ‘power’ strokes, � and � steps, when walking from site m to site m�1. The neck of the motor moves toward the left

Ž .by a distance of a normalized by dividing by the length of the lattice spacing, L when a forward � step is executed and by a
� �distance of 1�a when a forward � step is executed. Rate constant k is proportional to the concentration of ATP and k is� �

Ž . Ž .proportional to the concentrations of ADP and P . b The coordinate system normalized by dividing by L used to specify thei
position of the bead. The kinesin binding sites on the microtubule are labeled arbitrarily as m�0, �1, �2, . . . The origin of the

Ž . Ž .coordinate system x�0 is defined as the position of the bead on the microtubule labeled with a x when the elastic element
Žm.Ž .between the bead and the motor is relaxed. x i�1,2 denotes the position of the bead when the motor is in state i is attached toi

the lattice site m and the elastic element is relaxed.

hand, one head is detached from the binding site
while the other head is attached to the neigh-
boring site at the same time when undergoing the
� transition. Thus, as shown in Fig. 1a, a motor

Žmoves one step forward on the microtubule from
.site m to site m�1 and hydrolyzes one molecule

of ATP when it carries out a forward � transition
followed by a forward � transition.

The schematic representation of the physical
arrangement of the motor and the bead in the

� �motility assay of Visscher et al. 10 is given in
Fig. 1b, in which only part of the spherical bead is

shown. As discussed in I and shown in Fig. 1b, we
arbitrarily label the periodic lattice sites on a

Žmicrotubule as m�0, �1, �2... The origin x�
.0 of the x-axis of the coordinate system is then

Ždefined as the position of the bead not that of the
. Žmotor when the motor in state 1 the perpendic-

.ular state can attach to the site at m�0 without
Žgenerating any strain in the elastic element i.e.

.the elastic element is relaxed . In other words,
the origin of the x-axis is determined by the
position of the site on the microtubule assigned
as m�0 and the resting length of the elastic
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element connecting the bead to the motor. The
coordinate of each lattice site on this x-axis will
depend on the length of the elastic element. But,
this information is not needed in the formalism
Ž .see below . When attached to the bead, the
motor still undergoes the cyclic ATP hydrolysis
reactions shown in Fig. 1a. But, in contrast to the
free motor case, the rate constants of both � and
the � transitions are no longer constant, but
x-dependent.

Let us assume that the elastic element between
the motor and the bead obeys Hooke’s law. Then,
the strain energy generated by the elastic element
when the bead is at x and the motor in state i
Ž .i�1,2 is attached to the lattice site m can be
expressed as

K 2Žm. Žm.Ž . Ž . Ž .E x � x�x , i�1,2, 1i i2

where K is the combined stiffness of the elastic
Ž . Žm.element and the motor see below and x isi

the position of the bead on the x-axis when the
motor is attached to the lattice site m in state i

Ž Ž0.and the elastic element is relaxed e.g. x �0,1
Ž0. .x ��a, etc., see Fig. 1b . For convenience, the2

quantities EŽm. and x are made dimensionless byi
dividing their physical quantities by k T and L,B

Žm. Žm.Ž . Ž .respectively: E x �E x �k T and x�x�Li i B
where k is the Boltzmann constant, T is theB
absolute temperature, and L is the length of the

Žlattice spacing the length of a tubulin dimer in a
.microtubule protofilament . In this case, K is also

dimensionless and is related to its corresponding
2physical quantity K as K�KL �k T. As shownB

in Fig. 1b, in this normalized x coordinate system,
x Žm.� m and x Žm.� m�a where a is the length1 2

Ž .increase also in units of L of the elastic element
Žwhen a forward � transition is executed see Fig.

.1a . One must note that the motor is assumed to
move forward to the negative x-axis. Thus, for
Ž . Ž .� -end kinesins, the � end of the microtubule
is pointing toward the negative x direction.

Žm. Žm.Ž . Ž .Let � x and � x represent the x-depen-� �
Ž . Ž .dent forward � and backward � rate con-

stants, respectively, of the � step in Fig. 1a when
the motor is attached to site m and the bead is

Žm. Žm�1.Ž . Ž .located at x and � x and � x be the� �
corresponding rate constants of the � step
between sites m and m�1. Then, as in paper I,
we assume that these rate constants can be ex-

�pressed as a function of k , etc., in Fig. 1a and�
Žm. Ž .the quantities E in Eq. 1 as:i

Žm. � Žm.Ž . Ž Ž .� x �k exp � E x� � � 1

Žm. Ž .. Ž .�E x , 22

Žm. �Ž . Ž .� x �k exp � 1��� � �

Žm. Žm.Ž Ž . Ž .. Ž .� E x �E x , 31 2

Žm. � Žm.Ž . Ž Ž .� x �k exp � E x� � � 2

Žm�1. Ž .. Ž .�E x , 41

Žm�1. �Ž . Ž .� x �k exp � 1��� � �

Žm. Žm�1.Ž Ž . Ž .. Ž .� E x �E x , 52 1

m�0, �1, �2, . . . ,

where � and � are constants that determine the� �

division of the elastic strain effect between the
forward and the backward rate constants for the
two steps, respectively. It is important to point

Ž . Ž .out here that Eqs. 2 � 5 are not the only expres-
sions for the x-dependent rate constants; many
other forms of equations can be obtained. The
exact forms of these rate constants depend on
how the original multi-state model is contracted

Žor reduced to the two-state model see Appendix
� �.1 of Hill 21 . However, the ratio of the two �’s

Ž .and the two �’s must remain unchanged and is
dictated by thermodynamics. It is also important
to point out that the derivation of the formalism
does not depend on the exact forms of these rate
constants.

Now consider an ensemble of systems in which
the bead is subjected to a constant external load

Žm.Ž . Ž .F in the positive x direction. Let p x,ti
Ž .i�1,2 be the probabilities of finding systems in
the ensemble, in which the bead is located at x at
time t and the motor is attached to the lattice site
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m in state i. Then, these probabilities obey the
diffusion-reaction equations:

Žm. Ž . Žm.�p x ,t �u1 1��
�t �x

Žm�1. Ž . Žm�1. Ž .�� x p x ,t� 2

Ž Žm. Ž . Žm. .� � x ��� �

Žm. Ž .�p x ,t1

Žm. Ž . Žm. Ž . Ž .�� x p x ,t , 6� 2

Žm. Ž . Žm.�p x ,t �u2 2��
�t �x

Žm�1. Ž . Žm�1. Ž .�� x p x ,t� 1

Ž Žm. Ž . Žm. .� � x ��� �

Žm. Ž .�p x ,t2

Žm. Ž . Žm. Ž . Ž .�� x p x ,t , 7� 1

m�0, �1, �2, . . . ,

where

�pŽm. �EŽm.
1 iŽm. Žm. Žm.u �� �p �Fp ,i 1 i�x �x

Ž .i�1,2. 8

Žm. Ž . Ž .Note that the � , etc., and F in Eqs. 6 � 8�
Žm.are also dimensionless: F�FL�k T and � �B �

Žm. 2Ž .� x L �D, etc. where D is the diffusion coef-�
ficient of the bead.

Ž . Ž .Combining Eqs. 6 and 7 together and
summing over m, we get

�p �u�� � Ý�t �x
m�0,�1,�2, . . .

Žm�1. Žm�1. Žm. Žm.� � p �� p� 2 � 1

Žm�1. Žm�1. Žm. Žm. Ž .�� p �� p , 9� 1 � 2

Ž Žm. Žm.. Ž Žm.where p� p �p and u� u �Ý Ý1 2 1
m m

Žm.. Ž .u . It is easy to see that the last term in Eq. 92
becomes zero after carrying out the summation

and recognizing that pŽm. and pŽm. tend to zero1 2
� � Ž .at large m . Thus, we have �p x,t ��t���u��x.

Then, at steady state u becomes a constant inde-
pendent of x. This steady state u is equal to the
mean �elocity of the movement of the bead on the
periodic lattice, if the sum of the steady-state
probabilities within each period is equal to unity
� �1,22 . Thus, the key to evaluating the mean veloc-

Ž .ity of the bead in this system is to solve Eqs. 6
Ž .and 7 at steady state.

It is easy to see that at steady state the
Žm.Ž .probabilities p x at any m can be expressedi

in terms of those at m�0 as

Žm. Ž . Ž0. Ž . Ž .p x �p x�m 10i i

Žm. Žm. Ž .Since x �m and x �m� a, Eq. 1 im-1 2
Žm.Ž . Ž0.Ž .plies that E x � E x�m . In this case, thei i

Ž . Ž .dimensionless rate constants in Eqs. 2 � 5 can
also be expressed as those at m�0 as:

Žm. Ž . Ž0. Ž . Ž .� x �� x�m , etc. 11� �

Ž . Ž .With Eqs. 10 and 11 , the differential equa-
Ž . Ž .tions in Eqs. 6 and 7 at steady state can be

reduced to the following ordinary differential
equations at m�0:

2 Ž . Ž .d p x d E xd1 1Ž .� p x �F12 ž /d x d xd x

Ž . Ž .�� x�1 p x�1� 2

� Ž . Ž .� Ž .� � x �� x p x� � 1

Ž . Ž . Ž .�� x p x �0 12� 2

2 Ž . Ž .d p x d E xd2 2Ž .� p x �F22 ž /d x d xd x

Ž . Ž .�� x�1 p x�1� 1

� Ž . Ž .� Ž . Ž . Ž .� � x �� x p x �� x p x �0� � 2 � 1

Ž .13

Ž . Ž0.Ž . Ž0.Ž .where the superscript 0 in E x , p x , andi i
Ž0.Ž .� x , etc., has been dropped for convenience.�
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Ž . Ž .Explicit expressions of � x , etc., in Eqs. 12�
Ž . Ž . Ž .and 13 can be obtained from Eqs. 1 � 5 as

Ž . � �K a��Ž2 x�a.�2� x �k e ;� �

Ž . � K aŽ1�� a.Ž2 x�a.�2� x �k e ,� �

Ž . � �K Ž1�a.��Ž2 x�a�1.�2� x �k e ;� �

Ž . � K Ž1�a.Ž1��� .Ž2 x�a�1.�2 Ž .� x �k e 14� �

2where k �k L �D, etc., is dimensionless.�� ��

Ž . Ž .In general, p x and p x are mostly popu-1 2
lated near x�0 and are expected to decrease

� �rather rapidly when x increases. Thus, it is rea-
sonable to assume that both p and p become1 2

� �negligible when x is greater than some fixed
value b. In other words, the differential equations

Ž . Ž .in Eqs. 12 and 13 can be solved numerically
between x��b and x�b using the finite dif-

� �ference method 1,22 and the following boundary
and normalization conditions:

Ž . Ž . Ž .p �b �p �b �0 151 2

�b� Ž . Ž .� Ž .p x �p x d x�1 16H 1 2
�b

In general, the value of b used in numerical
solutions is determined by the value of K : the
smaller the K, the larger the b is required. For
the calculations to be presented below with K�

Ž .16 see Table 1 , a value of b�3 was found to be
enough. Note a different numerical method for
solving similar problems has been discussed be-

� �fore 23 .
The mean velocity of the bead at steady state

can be evaluated from the steady-state probabili-
ties using the equation:

Ž .d p x�m1u�� Ý ½ d x
m�0,�1,�2, . . .

Ž .d p x�m2Ž . � Ž . ��p x�m K� x�m �F �1 d x

Ž . � Ž . � Ž .�p x�m K� x�m�a �F 172 5
The mean ATP hydrolysis rate of the motor

also can be evaluated from the probabilities ei-
ther using the � step or the � step:

1� Ž . Ž .J � � x�m p x�mÝ H� � 1
0m�0,�1,�2, . . .

Ž . Ž .� Ž .�� x�m p x�m d x ; 18� 2

1� Ž . Ž .J � � x�m p x�mÝ H� � 2
0m�0,�1,�2, . . .

Ž . Ž .� Ž .�� x�m�1 p x�m�1 d x . 19� 2

Since the movement of the motor on the micro-
tubule is completely coupled to the ATP hydroly-

Ž .sis no slippage , the ATP hydrolysis rate evalu-
Ž . Ž .ated from Eq. 18 or Eq. 19 will equal to the

Ž .mean velocity u evaluated from Eq. 17 . One
must note that u and J are dimensionless. The
actual velocity of the bead and the ATP hydroly-
sis rate can be evaluated from these dimension-

2less quantities as u�uD�L and J�JD�L . In
other words, we have u�JL in this tight-coupled
system.

The basic part of the formalism is to solve the

Table 1
aThe reference set of parameters used in the calculations

�9 2 �1D�3�10 cm s K�16
L�8 nm a�0.5
� �0.5 � �0.13� �

�1 �2 �1� �� �k �3.75 T s k �3.4�10 s� �
�1 �3 �1� �k �141.1 s k �4.7�10 s� �

a� �T �concentration of ATP in �M.
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Ž .two ordinary differential equations Eqs. 12 and
Ž . Ž .13 with the rate constants in Eq. 14 and the

Ž . Ž .boundary conditions in Eqs. 15 and 16 . In
contrast to the one-headed case, the differential

Ž . Ž .equations Eqs. 12 and 13 for the two-headed
case do not contain the lattice site index, m. This
is due to the fact that the motor cannot com-
pletely dissociate from the lattice in this hand-
over-hand model. Note that these two differential
equations can be extended readily to include the
slippage steps in the kinetic mechanism of the
model.

3. The ‘chemical kinetic’ formalism

In this section, we briefly describe how to calcu-
late the velocity of the motor for the two-state
hand-over-hand model in Fig. 1a based on the

� �pure chemical formalism 11�16 .
In this formalism, the dynamics of the bead is

completely ignored so that the force applied to
the motor is assumed to be constant and equal to
the externally applied force. Then, using the same

Ž . Ž .load-dependence in Eqs. 2 � 5 , the load-depen-
dent rate constants of the � and � steps in this
formalism can be expressed in terms of the rate

� � �Fa��constants, k , etc., in Fig. 1a as: k e ,� �
� FaŽ1�� . � �F�Ž1�a.� � F�Ž1�a.Ž1�� .� � �k e ,k e , k e , re-� � �

� �spectively 11,12 . With these rate constants, the
velocity of the bead can be obtained as u�JL
where L is the length of the lattice spacing and
J is the ATP hydrolysis cycle rate:

J�

� � � � F F � aŽ� �� .�� �� � �� �k k �k k e e� � � �

� �Fa� � �F Ž1�a.� � FaŽ1�� . � F Ž1�a.Ž1�� .� � � �k e �k e �k e �k e� � � �

Ž .20

4. Illustrative model calculations

In this section, some numerical calculations are
carried out for the two-state model in Fig. 1a

Ž .defined by the rate constants in Eq. 14 and the

Ž .parameters in Table 1. The purposes are: 1 to
examine how the velocity of the bead in the assay
is affected by the hydrodynamic parameters of
the assay, such as the elastic coefficient of the
elastic element K and the diffusion coefficient of

Ž .the bead D; and 2 to examine the differences
between the present formalism and the pure
chemical formalism.

Table 1 lists the set of parameters of the model
used in the calculation. The values of the parame-
ters were chosen so that the calculated bead
velocity as a function of ATP concentration is

� �close to what measured by Visscher et al. 10 at
Ž .F�1.05 and 5.63 pN pico-Newton , respectively.

Note that only the ATP concentration is explicitly
expressed as a parameter in Table 1; the concen-
trations of ADP and P are assumed to be con-i

�stant and are absorbed in the rate constant, k .�
Also, note that the four rate constants in Fig. 1a
were chosen so that, at the physiological condi-

Ž� � .tion T �3 mM , the thermodynamic relation,
� � � � 23 � �k k �k k �e , is satisfied 24,25 and the ATP� � � �

� �Žhydrolysis rate in solution, J � k k �� �
� � � � � �. Ž .k k � k � k � k � k , is approximately� � � � � �

�1 � �100 s 26 .

4.1. Effect of the elastic coefficient K

Why are we interested in the effect of K and
what is the value of K in a motility assay? In any
in vitro motility assay, the motor is always ‘glued’
to something. In the bead movement assay, the
motor is glued to the bead. In the microtubule-
gliding assay, the motor is glued to a fixed sur-
face. Thus, there is always some added elastic
element in the system. In general, the elastic

Ž .coefficient K in Eq. 1 contains contributions
from the motor�microtubule complex and the
elastic element between the bead and the motor.
Let K and K be the elastic coefficients of them e
motor and the elastic element, respectively. Then,

Ž .we have K�K K � K �K . Thus, K is al-m e m e
ways smaller than either K or K . If we assumem e

ŽK �16 corresponding to the elasticity of anm
� �actin�myosin cross-bridge in muscle 25 , see the

. Ždiscussion in paper I , then K�16 as listed in
.Table 1 implies that the elastic element inserted

between the motor and the bead is infinitely stiff.
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If the elastic element has a finite value of elastic-
ity, then the value of K is always smaller than the
elastic coefficient of the motor. In general, in
order to estimate the force generated by the
motor from the motility assay, one needs to know
the value of K and the elastic coefficient of them
elastic element inserted between the motor and
the bead.

The calculated bead velocity using the present
formalism and the parameters in Table 1 is shown
as a function of the stiffness K in Fig. 2a,b at

Ž .F�0 curves with filled circles and 5.63 pN
Ž . � �curves with open circles for ATP �5 and 2000
�M, respectively. Also shown in the figures are
the velocities of the bead calculated using the

Ž .‘chemical’ formalism the dashed lines . For all
cases, the calculated bead velocity u increases
monotonically as the value of K decreases and is
always smaller than that evaluated using the
‘chemical’ formalism, except at K�0 where the
two velocities become identical. This is not sur-
prising, because the movement of the bead and
the movement of the motor are completely un-
coupled when K�0.

However, the finding in the two-headed case
that the bead velocity increases monotonically as
K decreases is quite different from what we found

� �for the one-headed kinesin case 1 , in which the
velocity increases at first, reaches a peak, and
then decreases toward zero as K decreases. As
discussed in paper I, for the one-headed kinesin

Ž .case the increase in u depends on two factors: 1
the increase in the bias for the forward advance-

Ž .ment of the motor along the microtubule; and 2
the increase in the ATP cycling rate. The ATP
cycling rate increases as K decreases. This is the
reason that u increases initially when K is re-
duced from a very large value. The increase in the
bias for the forward movement of the motor
requires the forward advancement of the bead.
Thus, when K becomes very small so that the
bead has no time to respond, the bias for the
forward movement of the motor decreases. As a
result, the bead velocity starts to decrease. For
two-headed kinesins with the hand-over-hand
mechanism, the motor does not dissociate from
the microtubule. The forward movement of the
motor along the microtubule is always biased; the

Ž .Fig. 2. The bead velocity as a function of the stiffness K of
the elastic element calculated for the model using the parame-

Ž . � � Ž . � �ters in Table 1 at a ATP �2000 �M and b ATP �5 �M,
in the presence and absence of an external force applied to

Ž .the bead. The dashed lines are those evaluated from Eq. 20
of the ‘chemical’ formalism without considering the involve-
ment of the bead.

bias does not depend on the forward advance-
ment of the bead. Therefore, the velocity of the
bead is simply proportional to the ATP cycling
rate. Thus, when K decreases, the effect of the
frictional drag of the bead on the ATP cycling
rate decreases, resulting in a monotonic increase
in ATP cycling rate and the velocity of the bead.

4.2. Effect of diffusion coefficient of the bead

In Fig. 3a, the calculated mean velocities of the
Ž .bead u are shown as a function of the diffusion

� �coefficient of the bead for ATP �2000 �M at
� �F�0 and 5.63 pN and for ATP �5 �M at

F�0. In general, the bead velocity decreases
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Ž .Fig. 3. a The calculated bead velocity as a function of the
diffusion coefficient of the bead. The dashed lines are those

Ž .from the chemical formalism. b The force�velocity curve
obtained by plotting the product of the velocity and the

Ž .diffusion coefficient the frictional force of the bead as a
function of the velocity calculated in the absence of an exter-

Ž .nal load F�0 .

slightly as the diffusion coefficient is decreased
from the reference value of 3�10�9 cm2 s�1 and
pronounced decrease occurs only after D is re-
duced more than 10-fold. However, the external
load F applied to the bead reduces the effect of
D on the velocity. For example, the value of D at
which the velocity starts to decrease sharply de-
creases as the externally applied load increases
Ž .compare the top two curves in Fig. 3a . Also the
Ž .u D curve becomes flatter as the load increases.

This is easy to understand, because when the
external load is much larger than the frictional

force of the bead, the effect of the diffusion
Žcoefficient of bead on the ATP cycling rate and

.therefore the velocity of the bead becomes negli-
gible.

As shown in Fig. 3a, the velocity of the motor
Ž .calculated based on Eq. 20 of the ‘chemical’

formalism is always larger than that calculated
using the present formalism. The difference will
be smaller, however, as the value of the K is

Ž .decreased see Fig. 2a,b .
The frictional force�velocity curve at F�0

Ž .with no externally applied load can be evaluated
Ž .from the u D curves in Fig. 3a. The calculated

� �force�velocity curve is shown in Fig. 3b for ATP
�2000 and 5 �M. The frictional force�velocity
curve is slightly concave-upward, similar to that
found in muscle. This is different from those

� �measured by Hunt et al. 4 , in which the
force�velocity is approximately linear. As will be
discussed below, the force�velocity curve evalu-
ated by varying the diffusion coefficient of the
bead at no external load is very similar to that
obtained by directly applying an external force
Ž .load to the bead.

By examining results in Fig. 2a,b, and Fig. 3a,
Žwe conclude: the more flexible the bead is by

.increasing D or reducing K , the faster the bead
moves at the same external load.

4.3. Effect of external load applied to the bead

Ž . Ž .By varying the value of F in Eqs. 12 and 13 ,
the effect of a constant load on the bead move-
ment can be studied. The load�velocity curve for
the model with the parameters in Table 1 calcu-

� �lated at ATP �2000 �M is shown in heavy line
in Fig. 4a. Also shown in Fig. 4 are those calcu-

Žlated with reduced K or reduced D dashed
.curves and that calculated based on the chemical

Ž .formalism dotted line . Consistent with results in
Fig. 2a,b, and Fig. 3a, the velocity evaluated based
on the chemical formalism is always larger than
that evaluated using the exact formalism at the
same external load. It is also found that the
frictional force�velocity curve obtained by varying
the diffusion coefficient of the bead is identical to
the force�velocity obtained by varying the exter-

Žnal load applied to the bead compare the upper
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.line in Fig. 3b with the heavy line in Fig. 4a . This
result is quite different from what we found in
paper I for the one-headed kinesin case: the
frictional force is always larger than the exter-
nally applied load at the same bead velocity in the
one-headed kinesin case.

The force applied to the bead at which the
bead stops moving is called the ‘stall’ force. The
stall force of a given system can be obtained from

Ž .Fig. 4. a The force�velocity curve calculated as a function of
the external load using the standard set of parameters in

Ž .Table 1 solid line . The two dashed curves are obtained for
reduced K and D, separately. The dotted curve is evaluated

Ž .using the pure chemical formalism. b The stall force calcu-
lated for the model using the parameters in Table 1 is plotted
as a function of the ATP concentration. The same curve is
obtained when the stall force is evaluated using the pure
chemical formalism or when any of the hydrodynamic parame-
ters is altered.

Fig. 5. Bead velocities calculated for the model using the
Ž .exact formalism of this paper solid lines and the chemical

Ž .formalism dashed lines are plotted as a function of the ATP
concentration in solution for F�1.05 and 5.63 pN.

the force�velocity curves in Fig. 4a by extrapola-
tion. As shown in Fig. 4a, all the force�velocity
curves intercept the y-axis at the same point. This
implies that the stall force of this model should
not depend on the values of the hydrodynamic
parameters of the system, nor on whether it is
evaluated using our formalism or the chemical
formalism. Fig. 4b shows the calculated stall force
as a function of ATP concentration for the model.

4.4. Effect of ATP concentration

In Fig. 5, the bead velocity as a function of
� �ATP is evaluated for two values of F using both
the present and the chemical formalisms. It is
easy to see that each individual curve has the
characteristic shape of the Michaelis�Menten ki-
netic curve:

� � Ž� �. Ž .u�u ATP � ATP�K 21max m

However, similar to the force�velocity curve in
Fig. 4a, the mean velocity of the motor evaluated
from the chemical formalism is also always larger
than those evaluated from the present formalism.
That is, neglecting the force fluctuation in the

Želastic element due to the movement of the
.bead always overestimates the value of the veloc-
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ity of the motor. Although it is obtained based on
the simple two-state model, we expect this conclu-
sion to be generally applicable to any hand-over-
hand model, because of the non-linear properties

Ž . Ž . Ž .of the rate constants in Eqs. 2 � 5 see below .

5. Discussion and conclusions

The key step of the present formalism is to
Ž . Ž .solve Eqs. 12 and 13 using equations in Eqs.

Ž . Ž .14 � 19 . These two equations can be solved
numerically when the basic kinetic rate constants

� Žof the model, k , etc., in Fig. 1a, are given as in�
.Table 1 . Although it was derived based on the

tight-coupled two-state model in Fig. 1a, the for-
malism can be easily extended to models with

Ž .slippage loose-coupled or to models with more
than two states in the kinetic mechanism. Since it
deals directly with the dynamics of the bead, the
formalism can be used directly to interpret or
study the measured mechanical data obtained
from the motility assay. For example, the formal-
ism is especially useful in analyzing the ‘frictional’
force�velocity curve obtained by varying the vis-
cosity of the medium as measured by Hunt et al.
� �4 . However, it is important to point out that only
the mean velocity or the mean ATP hydrolysis
rate of the motor can be evaluated using the
present formalism. To evaluate properties of the
motor related to fluctuations, such as the ran-

� �domness parameter 10 , one has to use the Monte
� �Carlo method 27�29 .

� �Recently, Elston and Peskin 30 presented a
theoretical study on the same motility assay, also
focusing on the movement of the bead. However,
their system is quite different from ours in that
they used the ‘Brownian Ratchet’ mechanism for
the movement of the kinesin motor on micro-
tubule. In our system, the kinesin motor translo-
cates on microtubule through binding and un-
binding and conformational changes of the two
heads, a mechanism similar to the ‘crossbridge’

� �model used in muscle contraction 25,31,32 .
As one can see from Fig. 2a,b, and Fig. 3a, the

velocity of the bead in the motility assay at a
given load and ATP concentration depends on
the ‘mobility’ of the bead in the assay: the more

mobile the bead, the larger the velocity. Thus,
experimentally one could increase the velocity of
the bead by decreasing the elasticity of the elastic
element connecting the bead and the motor or by
increasing the diffusion coefficient of the bead by
decreasing the size of the bead or the viscosity of
the medium.

It is important to point out that the stall force
evaluated for the present two-state model is found
to be independent of the hydrodynamic parame-
ters of the system. Thus, it is not surprising to
find that the frictional-force�velocity curve is
identical to the external-load�velocity curve
Ž .compare Fig. 3b and Fig. 4a . The stall force
evaluated using the chemical formalism is also
found to be identical to that evaluated using our
formalism. All these phenomena are the direct
result of the assumption that the coupling between
the ATP hydrolysis and the translocation of the
motor on the microtubule is tight in this model.
That is, the motor cannot slip, nor completely
dissociate from the lattice. As a result, when the
motor stalls, the force received by the motor is
always equal to the load applied to the bead,
independent of the stiffness of the elastic element
or the size of the bead, etc., and the system is at a
thermodynamic equilibrium. If the motor can dis-

Ž .sociate from the lattice loose coupling , the sys-
tem is at a steady state, not equilibrium, when the
bead movement is stalled. In this case, the stall
force is critically dependent on the hydrodynamic
parameters of the system, as found in the one-

� �headed motor case 1 . Thus, by measuring the
stall force at different hydrodynamic conditions
one may be able to assess whether the motor can
slip or dissociate completely from the micro-
tubule during the execution of the catalytic cycle.

As shown in Fig. 4a and Fig. 5, the velocity of
the bead for the two-state model evaluated from
our formalism was found to be smaller than that
from the chemical formalism. That is, with the
same set of kinetic parameters, the turnover rate
of ATP hydrolysis of the motor evaluated from
our formalism is always lower than that evaluated
from the chemical formalism. This result indi-
cates that the hydrodynamic relaxation and Brow-
nian motion of the bead do have a great effect on
the kinetic behaviors of the motor. The only time
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that the movement of the bead has no effect on
the kinetic behavior of the motor is when the
elastic element is completely flexible.

In conclusion, we have developed a formalism
that directly deals with the dynamic behavior of
the bead in the motility assay of Visscher et al.
� � Ž10 . In this motility assay, a large bead much

.larger than the motor is attached with a single
two-headed motor and the movement of the bead
Ž .not the motor under a constant load powered by
the motor is measured. Mathematical equations
are derived that can be used to evaluate the
velocity of the bead in the assay when the kinetic
mechanism of the motor is given. Since it deals
directly with the movement of the bead, the for-
malism is especially useful in analyzing motility
data that depend on the hydrodynamic parameter
of the bead, such as the size of the bead or the
viscosity of the medium, etc. We showed that the
velocity of the bead calculated from the pure
chemical formalism is larger than that calculated
from our formalism. We also showed that the
stall force measured as a function of the hydrody-
namic parameters of the system could be used to
tell whether the coupling between the ATP hy-
drolysis and the movement of the motor on mi-
crotubule is tight or loose.
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